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At constant temperature, the equilibrium variations in composition and pressure
due to gravitational segregation within an oil or gas reservoir are given by the equa-
tions

RT∆ ln zi = −RT∆ ln(φip)−Mig∆h, (1)
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where zi is the mole fraction of component i, p is the pressure, T is the temperature,
h is the height above an arbitrary reference point, φi is the fugacity coefficient of
component i (as a function of temperature, pressure and composition), Mi is the
molecular weight of component i, g is the gravitational acceleration constant, and
R is the universal gas constant. The initial pressure (p◦) and mole fractions (z◦i ),
corresponding to ∆h = 0, must be given quantities.

In some cases, for whatever reason, the fluids within a petroleum reservoir may not
reach a gravitational/chemical equilibrium. In such cases, we would still like to
have a model of the composition and pressure variations. At one extreme from the
model of perfect equilibrium is the model of perfect mixing, in which the composition
is constant everywhere (except across a phase-change boundary, such as a gas-oil
contact) and the pressure differential at each point is given by

dp = −ρgdh, (3)

where ρ is the fluid density at the given temperature, pressure and composition.

Early in 2003, Zick Technologies developed a new model for isothermal gravitational
segregation that encompasses the entire spectrum from perfect equilibrium to perfect
mixing. The new model is given by the equations

RTwi = −RT∆ ln(φip)−Mig∆h, (4)
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∆ ln zi = αwi, (6)

where α is a damping factor that can be assigned any value from 0 to 1. In addi-
tion, wi is a specially chosen intermediate variable for component i that is roughly
proportional to ∆h but relatively independent of α. When α = 1, the new model
reverts to equations (1)–(2) and the compositional changes are determined by ther-
modynamic equilibrium. When α = 0, the composition is held constant, as shown
by equation (6). For intermediate values of α, the compositional variation will be
somewhere between the two extremes. Regardless of α, it can be shown that the
pressure variation will always maintain the hydrostatic equilibrium given by equa-
tion (3).

When α = 1, the changes in composition and pressure can be determined, reversibly,
for any change in height, even across phase-change boundaries. In other words,
there are no step-size dependencies and any series of height changes that ultimately
returns the height to its original value will also return the composition and pressure
to their original values, even if phase-change boundaries have been crossed along the
way.

For α < 1, the composition and pressure changes are reversible only if the fluid
remains single-phase from one height to the next (not counting the discontinuous
transitions at phase-change boundaries). The fluid always remains single-phase for
α = 1, but not necessarily for α < 1. For example, suppose an oil is single-phase at a
certain reference height and suppose α = 0. As the height is increased, the pressure
will decrease, but the saturation pressure remains the same because of the constant
composition. Eventually, at the gas-oil contact height, the pressure will equal the
saturation pressure and the fluid will change from oil to gas. However, any further
increase in height will again cause the pressure to decline, now taking it below the
constant dew-point pressure of the gas, causing some retrograde condensation. If α
had equaled 1, on the other hand, the composition of the gas would have changed
rapidly enough for the dew-point pressure to decrease faster than the pressure, keep-
ing the gas single-phase. In fact, there will be some critical value of α, above which
the gas will remain single-phase as the height is increased and below which the gas
will undergo a phase split.

It is not really appropriate to apply the new model with a constant value of α
that causes multiple phases to appear at any of the heights of interest (except at the
discontinuities of the phase-change boundaries). Such cases would violate the model’s
assumption that the pressure changes are determined by the integration of single-
phase densities over the changes in height. In fact, because different phases have
different densities, multiple phases should actually have separate pressures (except
at the phase-change boundaries). The difference in pressure between two separate
phases in contact with each other is the so-called capillary pressure. However, no
current thermodynamic model, including the one presented here, is known to handle
equilibrium between phases at different pressures (i.e., to account properly for this
capillary pressure effect). Should the new model predict the appearance of multiple
phases above (or below) a certain height, then a different, larger value of α should be
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applied, at least above (or below) that height (if not universally), to keep the fluids
single-phase (except at the inevitable phase-change boundaries).

Regardless of α, all gravitational segregation calculations must originate from a given
reference point with a specified composition and pressure. From that point, up-
ward integration should be initialized with the least dense of all equilibrium phases
present, while downward integration should be initialized with the densest phase.
If a phase-change boundary is encountered during the integration, then any further
upward integration from that point should be reinitialized with the least dense of
the equilibrium phases at that point, while further downward integration should be
reinitialized with the densest phase. If further integration (from a phase-change
boundary) continues to produce multiple phases, then α should be increased to keep
the fluid single-phase and the model valid.
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