MMPz

FOR
MINIMUM MISCIBILITY
PRESSURES AND COMPOSITIONS

VERSION 1.3
NOVEMBER, 2002

Z1CK TECHNOLOGIES
PETROLEUM ENGINEERING
CONSULTING & SOFTWARE

5816 SW HUDDLESON STREET ® PORTLAND, OR 97219-6627
PHONE: 503-768-9386 ¢ FAX: 503-768-4824 ¢ E-MAIL: ZICK@ZICKTECH.COM

MMPz

Contents

Chapter 1. Introduction-------------- - oo mm oo 1
Chapter 2. Concepts------------ommm oo 2
Chapter 3. Conventions ----------- - - oo oo 3
3.1. COMIMENTS ~-=~==m=mm=mmmm e oo e oo oo e e e o e 3
3.1.1. Comment Lines ----------=-omm oo 3
3.1.2. Trailing Comments----------=- oo o mm oo 3

3.2, TOKeNS - - == - oo oo 4
3.3. Numbers -----------mmommmm 4
3.4. Character Strings ----------------m oo 5
3.5. Delimiters —-------ommmm oo 6
3.6. Keywords ------------=m oo 7
3.6.1. Keyword Abbreviations -------------------mmmmmmm 7
3.6.2. Keyword Aliases ---------=-=-=---mmmm oo 8

3.7. Commands ----------- - 8
3.8. Tables--------oo oo 10
3.8.1. Tabs Within Tables -------------n-mmmm oo 11
Chapter 4. Building an Input File-------------- o mmmmmmmeeo o 13
[13
4.2. Fluid Characterization--------------- oo oo 14
4.3. Oil COmMPOSItION =------==mm oo o e 16
4.4. Temperature and Pressure --------------------mmmmmmmmmm 16
4.5. Saturation Pressure Calculation ----------=----------ommmmmmmm oo 16
4.6. Injection Gases---=--=-===cscmmmmcmem oo 16
4.7. MMP ExXperiments ------------oommm oo oo oo e 17
4.8. MME Experiment ---------- oo oo oo oo 17
4.9. The Resultant MME Injectant---------------======mmmmmmmmm oo 17
4.10. Depletion --------mmmmmmmmm o 18
4.11. Additional MME Experiment -------------oommmmmmmm o 18
4.12. Multicontact Miscibility Tests -------------=mmmmmmmmmm oo 18
4.13. Final Input File ----------ommm oo 19
Chapter 5. Command Reference -----------------ccomommmmmmm 22
5.1. Characterization Command -------------------mmmmmmmmm 22

5.1.1. Component Subcommand --------------====--mmmmmm 22

MMPz

5.1.2. Binaries Subcommand -----------=-=- - oo oo 24
5.2. Mixture Command ---------===-mmmmm oo 25
5.3. Temperature Command ---------==-===m-mmmm oo 29
5.4. Pressure Command---------------mmmmm oo 30
5.5. MMP Command -----------nmmm oo oo 31
5.6. MME Command --------==---mmm oo oo 32
5.7. MCM Command -------==== - mmm oo oo e 33
5.8. Flash Command ----------=--mmm oo 34
5.9. Saturation Pressure Command ---------==-=-=-=mmommmmmmmm 35
5.10. Dew Point Pressure Command --------------====mmmommmmmm oo 35
5.11. Vapor Pressure Command -----------===== - ommmmmm oo 36
5.12. Title Command ---------===- oo oo oo 36
5.13. Note Command ----------=--m oo 37
5.14. TEST2 Command ----------=-- oo mmm oo 37
5.15. TEST1 Command -----------=-mmmmmm oo 38
5.16. INIT2 Command ----------=-mmmmmmm oo 39
5.17. Stability Command -------===- === - oo 39
5.18. Equation of State Command------------====-=-mm oo 40
5.19. Tabs Command----------==mmm o mmm oo 40
5.20. End-of-File Command ---------------mm oo 41
5.21. End Command --------=-=-mmm oo oo 41
5.22. Include Command --------==---mmmmm oo 42
5.23. Current Directory Command ----------====-- o= mmmmmm oo 43
5.24. Define Command ---------==- - mmmmm oo 44
5.25. Echo Command ---------==mmm o oo 45
5.26. Timing Command ---------==- - o= oo 45

Chapter 6. Units ------- == === m oo oo 46
Chapter 7. Running MMPz-------- oo mm oo 48
7.1. WindOws Version ---------==nomm oo oo oo e e e 48
7.2. Macintosh Version -------------ommm oo 49
7.3. Console I/ O =--mmmmmmmm oo 49
7.4. Input Files ----------mmm oo 49

7.5. Problems -------- oo mmmmm o 49

ii

MMPz

Chapter 1. Introduction

MMPz is a program for calculating the minimum miscibility pressure (MMP) or
minimum miscibility enrichment (MME) of any petroleum fluid system described by a
cubic equation of state (EOS). It is designed to predict a good approximation of the
true, thermodynamic MMP or MME regardless of whether the displacement
mechanism is that of a condensing gas drive (CGD), a vaporizing gas drive (VGD)," or a
condensing/vaporizing (C/V) gas drive.” It is assumed here that the reader is already
familiar with the concepts of these displacement mechanisms, developed miscibility
in general, and minimum miscibility conditions in particular.’

The universally accepted method for predicting an MMP or MME with an EOS is to
simulate a series of one-dimensional slim tube displacements, looking for the
pressure or solvent enrichment level where the recovery (after 1 to 1.2 pore volumes of
injection) first reaches nearly 100%. Unfortunately, such simulations are very time-
consuming and subject to numerous interpretation errors.

MMPz utilizes proprietary techniques to predict an MMP or MME by capturing the
compositional mechanisms of a true displacement process, but with far greater
efficiency, accuracy, and consistency than can be achieved through slim tube
simulations. Essentially, through a simulated multistage, multicontact experiment,
MMPz estimates the compositional path taken during an actual displacement. It looks
for conditions of pressure or solvent enrichment under which the path will develop
miscibility. Acceleration techniques are used to speed convergence toward the
ultimate path, and extrapolation techniques are used to approximate that path
through a finite number of stages and contacts. The end result is an accurate (within 1
or 2%, typically), consistent (i.e., differentiable) estimate of the thermodynamic MMP
or MME with a minimal amount of computation.

This manual describes how to use MMPz. The next three chapters—“Concepts,”
“Conventions,” and “Building an Input File”—should be studied carefully. The rest of
the manual is more for reference and example. It should initially be skimmed for an
overview of MMPz'’s capabilities and later referred to as needed.

! Stalkup, F.I, Jr.: Miscible Displacement, Monograph Series, SPE, Richardson, Texas (1984).

* Zick, A.A.: “A Combined Condensing/Vaporizing Mechanism in the Displacement of Oil by Enriched
Gases,” paper SPE 15493 presented at the 1986 SPE Annual Technical Conference and Exhibition, New
Orleans, October 5-8.

3 Whitson, C.H., and Brulé, M.R.: Phase Behavior, Monograph Series, SPE, Richardson, Texas (2000),
121-141.

MMPz

Chapter 2. Concepts

Think of MMPz as a virtual phase behavior laboratory. At one end of the lab is a
storage area for fluid tanks. Some of these tanks are initially filled with single-
component fluids. The rest are initially empty, but can be filled at any time with
mixtures of fluids sampled from non-empty tanks. At the other end of the lab is an
apparatus that can be used as a simple PVT (pressure-volume-temperature) cell for
equilibrating fluids, or as a virtual, multistage mixing device for multicontact
miscibility experiments. This apparatus can be set to operate at any temperature and
pressure. It is also connected to a few special fluid tanks. Some of these tanks feed
fluids into the apparatus before or during each experiment and can be filled with any
desired mixture of fluids from the other tanks within the lab. Other tanks capture
fluids from the apparatus during or at the end of each experiment. Samples from these
tanks can be transferred to other tanks for later use. Finally, MMPz acts as the capable
lab technician, performing any sequence of instructions to mix fluids, run
experiments, and record results.

MMPz’s user is the director of this virtual laboratory. He or she creates a set of
instructions for the virtual technician (MMPz) to follow. This usually begins with a list
of the fluid components that are available, then proceeds with instructions for
creating mixtures of those components and storing them in labeled tanks, which, in
turn, can be used to create other mixtures, including those in the experimental
apparatus’s input tanks. The temperature and/or pressure of the experimental
apparatus can be changed at any time and sequences of PVT and/or miscibility
experiments can be performed in any desired order. The fluids generated by any
experiment can be saved, mixed with other fluids, and/or used as input for
subsequent experiments. In this manner, MMPZ'’s user can be very creative about the
results that are generated and reported. The more familiar the user is with the
instructions understood by MMPz, the more creative he or she can be.

The user enters the list of instructions for MMPz into a text-only input file. This file
can be created, edited, or viewed in a text editor, a word processor, or even a
spreadsheet program. It consists of a sequence of free-format, keyword-activated
commands and their associated data. This sequence of commands can be of
practically any length. The commands can be issued in practically any order, and are
always executed in that order. Thus, the input file acts as a script for MMPz to follow.

In turn, MMPz generates text-only output files. Again, these can be opened with a text
editor, a word processor, or even a spreadsheet program (which can make it
particularly convenient to manipulate or plot the results).

The next chapter discusses two important types of conventions—those followed by
MMPz when it reads an input file, and those followed by this manual. The easiest way
to learn how to use MMPz is to learn these conventions first.

MMPz

Chapter 3. Conventions

When MMPz reads an input file, it distinguishes between several different types of
input: comments, tokens, numbers, character strings, delimiters, keywords, commands,
and tables. All must follow certain conventions so MMPz can recognize them. This
manual will also follow certain conventions to help the reader recognize them. These
conventions will be described in the following sections.

3.1. Comments

When building an input file, it is always a good idea to include plenty of comments, so
the file can be understood more easily at a later date and by others. MMPz allows two
different types of comments: the comment line and the trailing comment.

3.1.1. Comment Lines

Comment lines are comments that occupy an entire line within an input file. No
matter where a comment line is located (even if it’s in the middle of a table or some
other collection of data), MMPz will behave as though that line was not in the file at
all. The following section of an input file lists all of the ways to insert a comment line.

A pound sign in column 1 indicates a comment line.

! An exclamation point in column 1 indicates a comment line.
A colon in column 1 indicates a comment line.

; A semicolon in column 1 indicates a comment line.
; Column 1 contains a blank, so this is not a comment line.

* The previous line was blank, but not a comment line.
-- Hyphens in columns 1 and 2 indicate a comment line.
== Equal signs in columns 1 and 2 indicate a comment line.

This also illustrates one of the manual’s conventions: examples that show portions of
an input file will be displayed in a mono-spaced typeface, surrounded by a box.

3.1.2.Trailing Comments

Any line (except a comment line) can be ended with a trailing comment, which

consists of a semicolon (“;”) and anything else on the rest of the line. Here are some
examples:

1 2 3 ; This line has three numbers and a trailing comment.
; This is a comment line, which was described earlier.
; Comment lines are treated as though they didn’t exist.

; This is different: a blank line with a trailing comment.
4 5 6 ; Another three numbers and another trailing comment.

MMPz

Since the comments are ignored, the five-line sequence above is treated exactly the
same as the following three-line sequence:

3.2. Tokens

MMPz will spend most of its time, on input, looking for fokens. Tokens can be
keywords, user-defined names (for components, mixtures, etc.), or numbers. It would
not be a bad idea to know what constitutes a token, as far as MMPz is concerned.
Table 3-1 lists all of the possible token characters, some of which can only be used
after the first character. No other character would ever be recognized as part of a
token.

Table 3-1. Token Characters

Allowable Allowed for First
Token Characters Character?
Any Alphanumeric Character Yes
+- ~%.7 Yes
*#/ No

Note: tokens are always case-insensitive. The user may mix uppercase and lowercase
characters at will. MMPz will keep each token just as the user input it, but whenever
tokens are compared, case will be ignored. For example, the token “Abc¢” would be
considered identical to the token “4BC”. Also note that a token’s alphanumeric
characters are not restricted to English language characters. From now on, tokens will

be shown in a mono-spaced typeface.

3.3. Numbers

Numbers, when required, can be entered in integer format (1, 2, -3), floating point
format (1.0, 2., -3.0), or in any of the common scientific formats (0.1e1,
20E-01, -30.0d-001). Note that the scientific exponent can be preceded by “e”,
“E”, “d”, or “D” and possibly a plus or minus sign. A number cannot contain any
extraneous characters and cannot be immediately followed by any extraneous token
character except a slash (*/”). Note that all legal numbers are also tokens, but not all
tokens are numbers (for example, the token “3E” is not a number, but “3E0” is).

If the same number is to be entered numerous times, a repeat factor can be used. The
proper syntax is a positive integer (for the number of repetitions), immediately
followed by an asterisk (“*”), immediately followed by the number to be repeated

MMPz

(with no intervening blanks). A repeat factor can also be used to enter default values of
a number. In that case, the syntax is a positive integer (for the number of repetitions),
immediately followed by an asterisk (**”), immediately followed by a blank, the end
of the line, or any non-alphanumeric character other than “+”, “-", v _» or “*”,
Repeat factor examples are shown in the following:

3*¥4.2 ; equivalent to 4.2 4.2 4.2

1*-2 ; equivalent to -2

2* .0 ; equivalent to .0 .0

1+ ; equivalent to one default entry

3* 1 ; equivalent to three default entries followed by a 1
4*, 2 ; equivalent to four default entries followed by a 2

3.4. Character Strings

In some cases, MMPz will allow the input of character strings. Examples include titles,
notes, and file names. Character strings may contain any characters. They should
usually be quoted with a matching pair of single or double quotes.

Character strings can also be tab-delimited. If tab-delimited, the tabs take precedence
over any quotes, but the resulting string will also be stripped of any outer matching
double quotes and then any outer matching single quotes, in that order. The reason
for these strange rules is to allow input files to be created and edited with the
spreadsheet program, Microsoft Excel, which follows even stranger rules. Excel will
always tab-delimit its cells, but it may also (sometimes) add double quotes, even if the
cell was initially single-quoted.

If a character string is simple (i.e., if it begins like a token and contains no blanks),
then it can be entered without quotes or delimiting tabs.

If a string is quoted, but it needs the same type of quote within the string, then the
embedded quote should be entered twice in a row.

In the following examples, the character “»” represents the tab character (which
would otherwise be invisible) and the actual, recognized string is shown in a trailing
comment (from the first non-blank character after the semicolon to the last, including
any quote marks).

MMPz

Title "A through zZ" ; A through Z
Title 'A through Z' ; A through Z
Title »A through Z» ; A through Z
Title »"A through Z"» ; A through Z
Title »'A through Z'» ; A through Z
Title »"'A through zZz'"» ; A through Z
Title »'"A through zZ"'s» ; "A through Z"
Title »"Asthrough»Z"» ;"R

Title "'A through Z'" ; 'A through Z'
Title '"A through zZ"!' ; "A through 2"
Title """A through z""" ; "A through Z"
Title '''A through z''' ; 'A through Z'
Title A through Z ;A

Title A-through-Z ; A-through-2Z

Note that if MMPz is looking for a token rather than a character string, then quotes
will make no difference (i.e., any quotes will be treated just like blanks). It is
impossible to define a token that contains anything but the allowable token
characters.

Also note that character strings are always case-insensitive. The user may mix
uppercase and lowercase characters at will. MMPz will keep each character string just
as the user input it, but if character strings are ever compared, case will be ignored.
For example, “the time is now” would be considered identical to “The Time is NOW”.

3.5. Delimiters

Delimiters are characters that separate tokens, numbers, and character strings from
each other. The most common delimiter is the blank character. The end of each line is
also a delimiter. Most of the punctuation characters (except those listed as token
characters in Table 3-1) also behave as delimiters, usually just like blanks, but often
with better readability. Here are just a few examples:

Title = "A through Z" ; same as: Title "A through z"
Mix C: A & B ; same as: Mix C A B
Pressure ==> 1 (atm) ; same as: Pressure 1 atm

There are a few special delimiters, however. The slash (*/”) is one of those. The slash
can be part of a token (e.g., “G/cc”). Otherwise, however, a slash ends MMPz'’s
current search for input and causes the rest of the current line to be ignored. This is for
compatibility with input that may have originally been designed for FORTRAN
programs. This use of the slash, however, is never necessary and therefore
discouraged.

The comma (“, ”) is another special delimiter. The comma ordinarily behaves just like
a blank. However, if MMPz is searching for some type of input, and it encounters two
commas in a row (even if separated by blanks or other delimiters), then it will use the

MMPz

default value for that input. This is also the case if MMPz encounters a slash following
a comma. Again, this type of behavior is for compatibility with the rules for FORTRAN
input.

In addition, for aesthetic reasons, the above rule has been extended to apply if MMPz
encounters a comma following an equal sign (*="), a colon (*: "), an at sign (“@”), an
ampersand (“&”), a vertical bar (* | ”), or the beginning of a new line (with or without
other delimiters in between). A comma after any of these characters makes it look as
though something has been omitted (e.g., “A = ,”), much the same as with two
consecutive commas (e.g., “A, ,"). Therefore, this omission, like one between
commas, will also represent a default value.

Here are some examples on the use of slashes and commas:

Mix A 1 2 / assigns 2 (of possibly many) numbers

Mix A, , 2 / assigns 2 numbers, the 1lst of which is defaulted
Mix A = 1, / assigns 2 numbers, the 2nd of which is defaulted
Mix A = , / assigns 2 numbers, both of which are defaulted
Mix A

, / assigns 2 numbers, both of which are defaulted
Mix A: ,

, / assigns 3 numbers, all of which are defaulted

It is highly recommended, however, that consecutive commas, or commas following
other punctuation characters, be avoided unless the user is very certain of the rules
that will apply.

3.6. Keywords

Keywords are tokens that have special meaning to MMPz. They may trigger
commands, set options, or comprise the headers in a table, for example. There may, in
fact, be a number of tokens that will be recognized as the same keyword. That’s
because many keywords allow abbreviations and/or aliases.

3.6.1. Keyword Abbreviations

Let’s consider the keyword that would trigger a saturation pressure calculation. Some
people might prefer to remember the token “SATP”. Others might prefer “*SatpPres”
or maybe “SatPress”. Still others might prefer *SatPressure”. All of these would
be allowed, because MMPz recognizes the abbreviation “SATP” (remember that all
tokens are case-insensitive).

On the other hand, the keyword for triggering a flash calculation must be spelled
exactly as “Flash”. The tokens “FlashIt” or “FlashCalc” would not be
recognized. That’s because “FLASH” is the keyword, and not an abbreviation.

MMPz

So how can one know when abbreviations are allowed? If you can think of a sensible
abbreviation, then it’s probably allowed. You can always try it. But this manual is the
final authority.

That brings up another convention that will be followed in this manual. From now on,
keywords within the text (but not the examples) will be written in a bold, mono-
spaced typeface. Take, for example, the keyword SATPres. The mandatory characters
will be written in uppercase, with optional characters in lowercase. Whenever optional
characters are shown, the mandatory characters will represent the allowable
abbreviation. An abbreviation might also be depicted by showing it with a trailing
asterisk (to be viewed as an optional, wild-card character): SATP*, for example. If a
keyword is presented in uppercase characters only, however (e.g., FLASH), then that
keyword is not an abbreviation for anything else.

3.6.2. Keyword Aliases

Because of its abbreviation, the keyword SATPres can be shortened to four
characters, or expanded to even more, as the user prefers. But suppose the user would
find it easier to remember PSATuration as the keyword for saturation pressure. Well,
that’s okay, because PSAT* is an alias for SATP* (and vice versa).

Many keywords have aliases. Whenever this manual describes the function of a
keyword, it will list all of the possible aliases. The user doesn’t need to learn every
alias, though. One is enough. The idea is that one alias or another might be easier for
each user to remember. Also, if a user can’t immediately recall a particular keyword,
there’s a good chance that a logical guess might hit upon one of the aliases.

3.7. Commands

Many of the keywords recognized by MMPz are used to issue commands to the
program. Each command might allow additional input, often in the form of additional
keywords that are used to issue subcommands or specify options. Much of this manual
is devoted to describing these commands and subcommands. When doing so, it will
follow some specific conventions, which are described below.

After a heading to introduce a new command, the syntax of the command will be
given. Here, the TEMPerature command will be used for illustration purposes:

TEMPerature [(value unit) | (unit [valuel)] [STOre name]..
[REStore saved [fraction [LINear |LOGarithmic]]]..

The keyword for the command (TEMPerature, in this case) will be given first, using
the keyword conventions described in the previous section. Any subcommand
keywords (e.g., STOre and REStore) or option keywords (LINear or LOGarithmic)
will also be displayed according to the keyword conventions.

Any expected numerical input (e.g., value or fraction) will be shown in mono-
spaced italics. Any expected non-numerical token input (e.g., unit, name, or saved)
will be shown in the regular mono-spaced typeface. Any expected character string

MMPz

input (not found in this example) will be shown in quoted italics, e.g., "string". The
instructions for the command will explain what the numbers, tokens, and strings are
supposed to represent.

Input that is optional will be bracketed, such as [STOre namel. Brackets can be
nested if an option can itself take optional input.

If there is a need to group two or more pieces of input into a single input pattern, they
will be surrounded by parentheses, as with (value unit). Parentheses can be
nested if grouped patterns need to be grouped further.

If there is a choice of two or more pieces of input (or input patterns), the choices will
be separated by vertical bars (* | 7). If the choice has a default selection, the default
will be underlined. In the example, if a fraction is specified with the REStore
subcommand (for making the temperature change only a fraction of the full change
to the saved temperature), then one has the option of specifying either a LINear or a
LOGarithmic scale for the fraction, with LINear being the default choice.
Similarly, if one wishes to enter a value and a unit, they must both be entered
immediately after the TEMPerature keyword (since they're not part of a
subcommand), but they can be entered in either order (due to the choice of the two
possible patterns).

If an optional (bracketed) input pattern can be entered more than once, it will be
followed immediately by an ellipsis (*...”). This can be seen twice in the example. An
ellipsis might also be used after the keyword for a subcommand (for example,
KEYword ..) if the syntax for the subcommand is complicated enough to warrant a
separate explanation. This type of usage is not found in this example.

The parentheses, brackets, bars, and ellipsis characters do not need to be entered in
the input file. They're only used in the manual to show syntax. Characters like this are
normally delimiters, however, so they would just be ignored if they were entered.

Normally, the input for a command can be spread out over as many lines as desired
(even with blank lines interspersed), and subcommands can normally be entered in
any order. Any exceptions to these rules will be noted in the instructions for the
command in question.

Instructions for the TEMPerature command will be given later in this manual, but the
following examples illustrate legal syntax:

TEMPERATURE = 60 F

TEMPERATURE (F) = 60

TEMP: STORE LOW

TEMP 150 C, STORE HIGH, RESTORE LOW

TEMP RESTORE HIGH 0.75

TEMP 450 K, RESTORE LOW @ 0.5 LOG-SCALED

MMPz

3.8. Tables

In some cases, data must be input in tables (component properties and binary
interaction parameters, for example). MMPz allows a lot of flexibility in formatting
tables. The columns can be placed in almost any desired order. So can the rows.
Columns can be separated by spaces, tabs, or a combination of the two. Tables can be
built with a text editor, or imported directly from a spreadsheet program. Cells can be
left blank (for default values), even in the middle of a table. Entire rows or columns
can easily be commented out, even in the middle of a table. Tables can even be
assembled in sections. And yet, tables are actually quite easy to build, once the rules
are understood.

The following is an example of a component property table, formatted in two sections.
The meaning of the table will be explained later. For now, just concentrate on the
format:

Component Tc (K) Pc (atm) AF MW VShift
N2 -0.0079
Co2 0.0833
Methane 0.0234
Ethane 0.0605
Propane 0.0825
Butanes 425.2 37.5 0.193 58.123 0.0902
Pentanes 469.6 33.3 0.251 72.150 0.1115
Hexanes 507.4 29.3 0.296 86.177 0.1467
Component \Ye! ~ZC Tb SG
ft3/1lbmol R

Butanes 4.080 0.2736 490.8 0.5844

Pentanes 4.870 0.2623 556.6 0.6301

Hexanes 5.929 0.2643 615.4 0.6604

Notice that each column has a header keyword and that some columns (for
dimensional properties) require unit keywords. At least one of the columns in each
table will contain independent variables; the rest will contain dependent variables.
One of the independent variables must be in the first column. The rest of the columns
can be placed in any desired order. In the example above, Component is the
independent variable.

Comment lines have been strategically placed to underline each header above. They
are not required, however. They are strictly cosmetic, since comment lines are
completely ignored.

A table can be entered in multiple sections (two, in the example). The first section
must define every row of the table, but not necessarily all of the columns. Subsequent
sections can add or modify columns of data for any previously defined row, but

10

MMPz

cannot define new rows. Rows are identified by their independent variables. The
second section of the example table contains rows corresponding to the last three
rows of the first section (i.e., the last three components), but not to the first five. That
is perfectly acceptable.

In the example table, the only property that has been specified for the first five
components (N2 through Propane) is VShift. The rest of their properties have been
left blank, for default values (these will normally be filled in from the component
library or from various correlations, but such details are unimportant here).

How does MMPz know that -0.0079 isN2’s VShift property, and not its TC
property? The answer is simple. It lines up the data in each column with the
appropriate header by character position. If a column entry looks like it’s lined up
underneath a particular heading, then it probably belongs to that heading. The actual
rule is a little more specific, however. Locate the last character position of the column
entry and then find that position on the header line. The first header keyword that is
encountered at or to the left of that position is the one to which that entry belongs.
Each header is allowed no more than one entry per row; extraneous entries constitute
errors.

Note that a mono-spaced typeface is required to guarantee that a properly aligned
table will look like it’s properly aligned. No matter how a table looks, however, the
above rules dictate the proper data assignments.

In the example below, where the alignment is not very obvious at first, the
associations between the data and their headers are indicated by their indices. Two of
the data entries are misplaced however. They are indicated, appropriately, by the
word error. The first entry is in error because it’s not aligned with any header. The
third entry is also in error because it’s aligned with Header2, which has already been
assigned the entry datum2.

Headerl Headexr2 Header3 Header4 Header5
error datum?2 error datum4 datumb

Going back to the example of the component property table, note that some of the
columns require units, which are specified by their own keywords. Unit keywords can
be entered in one of two ways: they can be placed after their corresponding header
keywords, or they can be placed on the next line, under their corresponding header
keywords (and lined up according to the rules above).

If a column’s header begins with a question mark (*?”), an underscore (* "), or a
tilde (»~"), that column will be read but then ignored. The column for zc has been
commented out that way in the example.

3.8.1. Tabs Within Tables

One needs to be a little careful about using tab characters to separate the columns
within a table. This is especially true if tabs and spaces are combined to align a table
(visually) in a text editor. The problem is that there’s no standard way for editors to

11

MMPz

display tabs, making visual alignment editor-dependent. For many editors, the default
behavior is to simulate a tab stop (an old typewriter term) every 4 characters. Others
use a default tab setting of 8. Still others treat tabs as single spaces. With most editors,
this setting can be changed, often from document to document. For MMPz to read a
table the way it was intended, it has to know (or be able to guess) how the table
appeared to the user. When tabs are present, this is not always straightforward.

It’s easy to end up with tabs in an input file. Tabs are commonly introduced with
spreadsheet data and some text editors insert them at every opportunity. Fortunately,
there are four different ways, all of them fairly simple, to get MMPz to handle tabs
correctly.

The first suggestion is to not use tabs. Most text editors can be instructed to never
insert them. If they are introduced somehow, most text editors can be instructed to
convert them to spaces, or at least to find them so they can be replaced manually. This
is not necessarily the most practical suggestion, however.

The second suggestion, and probably the simplest, is to align the tables visually, with a
text editor, but then to tell MMPz about the editor’s tab setting. If MMPz knows how
many character positions correspond to each tab, then it will see the table exactly as it
appears in the editor. MMPz has a TABS command specifically for this purpose. If the
editor’s tab setting is 8, for example, then one simply inserts the corresponding
instruction, TABS = 8, somewhere in the input file, prior to any tables. In fact, it is
strongly advised that whenever a table containing tabs is aligned in a text editor, one
should use the TABS command to inform MMPz of the editor’s tab setting.

The third suggestion, which is also very simple, is to increase the editor’s tab setting to
a value larger than the width of any column in any table (10, 15 or even 20, perhaps),
guaranteeing that each tab signifies a new column.

The final suggestion is to adopt the strategy of putting exactly one tab (with no extra
spaces) between any two entries from adjacent columns, and not worrying about
whether the resulting tables line up visually. This strategy is difficult to implement
with a text editor, but it becomes the natural choice if tables are built with a
spreadsheet program (or even a word processor, if one is careful).

If you build a tab-delimited table with a spreadsheet program, then you probably
won’t need to use MMPz’s TABS command (as long as you don’t realign the table in a
text editor afterwards). That’s because every entry in a column (including the header)
will be separated from its corresponding entry in the next column by a uniform
number of tabs. By default, MMPz assumes a tab setting of 100, so it will think that the
columns start in character positions 1, 101, 201, and so forth. As long as all entries are
less than 100 characters long, they're guaranteed to line up under MMPZ’s rules. If a
tab-delimited table is imported to a text editor, it may not appear to line up correctly.
That can be fixed, however, simply by increasing the editor’s tab setting. It should not
be “fixed” by inserting additional tabs or spaces.

12

MMPz

Chapter 4. Building an Input File

The best way to build an input file for MMPz is probably to modify an existing input
file. This chapter, however, will present a recipe for building a typical input file from
scratch. It will do this primarily by example, showing the most important features of
the most important commands. A complete description of all the commands will be
given in the next chapter.

The goal here will be to calculate a couple of MMPs and a couple of MMEs, with a few
other simple phase behavior calculations along the way. In order to calculate an MMP
or an MME, you first need:

e An EOS fluid characterization.
¢ An oil composition.
e Atemperature.
In order to calculate an MMP, you also need:
¢ An injectant composition.
In order to calculate an MME, you also need:
e Compositions of a lean gas and a rich gas.
e A pressure.

Therefore, this chapter will demonstrate the commands necessary to:
e Specify a fluid characterization.
e Specify an oil composition.
e C(Calculate the oil’s saturation pressure at a given temperature.
e Specify compositions for a lean gas and an enriching gas.
e Specify an injection gas mixture of the lean and rich gases.

e (alculate the MMP of the injection gas in displacing the oil, using two different
numbers of stages.

e Calculate the MME of the lean gas with the rich gas in displacing the oil.
e Deplete the oil to a lower pressure.

e (alculate the MME of the lean gas with the rich gas in displacing the depleted
oil at the original MMP.

e Check MMPz’s previous estimate of multicontact miscibility.

4.1.Title

Although not required, a good way to start is by giving this particular problem a title,
which will help to document both the input file and the output file. In this case, we’ll
give it a multiple line title. It is also sometimes helpful to ECHO portions of the input
file to the output file for later reference, so we will ECHO the entire file:

13

MMPz

14

Echo ON

Title: "Simple MMPz Test Case"
Title: "Jessen-Michelsen-Stenby Fluid System"
Title: "SPE 50632"

4.2, Fluid Characterization

Now we’ll input something essential: the EOS fluid characterization. This consists of a
name for the characterization, a specification of the EOS (if not the 1979 Peng-
Robinson, PR79), and a list of components, along with their physical properties and
binary interaction parameters, which are specified in separate tables (each of which
can be split into sections, if desired). The only physical properties that are mandatory
for MMP or MME calculations are molecular weight, critical temperature, and critical
pressure. If a fluid characterization includes acentric factors, binary interaction
parameters, or any modifications to the Q, and Qg parameters of the EOS, then these
parameters must also be specified (to get the correct phase behavior predictions). One
way to input a valid characterization would be:

MMPz

Characterization "JMS (Tc-Tuned)", EOS = SRK

Component Tc (K) Pc (atm) AF MW
N2 126.200 33.6000 0.0400 28.016
COo2 304.200 72.9000 0.2280 44 .010
Cl 190.600 45.4000 0.0080 16.043
C2 305.400 48.2000 0.0980 30.069
C3 369.800 41.9000 0.1520 44 .096
i-Cc4 408.100 36.0000 0.1760 58.123
n-C_c4 425.200 37.5000 0.1930 58.123
i-C5 460.400 33.4000 0.2270 72.150
n-_C5 469.600 33.3000 0.2510 72.150
Ce 507.400 29.3000 0.2960 86.177
Cc7 632.800 30.2987 0.1842 109.007
Cl1 659.605 23.4598 0.4773 175.327
Cle 703.646 19.2900 0.8197 256.674
c23 766.497 16.7852 1.2114 370.099
C33 830.500 15.1302 1.3718 590.374
Binaries N2 CcOo2

C1l 0.02 0.12

C2 0.06 0.15

C3 0.08 0.15

i-Cc4 0.08 0.15

n-C_c4 0.08 0.15

i-C5 0.08 0.15

n-_C5 0.08 0.15

Ce 0.08 0.15

C7 0.08 0.15

Cl1 0.08 0.15

Cle 0.08 0.15

c23 0.08 0.15

C33 0.08 0.15

END; of characterization

For accurate density predictions, most fluid characterizations also include volume
shift factors (vshift), but this characterization does not. Volume shift factors do not
affect any miscibility or equilibrium calculations—only volumetric predictions.

If there are any blank entries in the component property table, MMPz will attempt to
apply default values from the component library or from various correlations. Except
for the EOS parameters A and B (or AMOD* and BMOD*), all other component
properties (which have not been given a heading in the component property table)
will default to zero. The A and B parameters will default to the Q, and Q; of the
particular EOS, however, while the multipliers AMOD* and BMOD* will default to 1. All
binary interaction parameters will default to zero.

MMPz

Even though Therefore, characterizations must be specified completely ().

4.3. Oil Composition

Compositions are specified with the MIXture command, which has a great deal of
flexibility. But in the simplest case, it just needs a token for the resulting mixture’s
name and a list of the mole fractions or percentages:

Mix O0il: 0.450 1.640 45.850 7.150 6.740
0.840 3.110 1.030 1.650 2.520
12.440 6.320 5.024 3.240 1.996

4.4. Temperature and Pressure

The temperature is easily set with the TEMPerature command (which must include
the desired units). It remains set until another command is used to change it. We
might as well specify a PRESsure, also. This will be changed shortly by a saturation
pressure calculation, so the value we choose here is not very important. But by
specifying a pressure, we also specify the units, which will then be maintained by the
subsequent saturation pressure calculation.

Temp = 387.45 K, Pres = 0 atm

Notice that multiple commands can be entered on a single line.

4.5, Saturation Pressure Calculation

It is not necessary to calculate the oil’s saturation pressure, but it will be instructive to
do so anyway.

Before any phase behavior experiment can be performed, the experiment’s FEED tank
must be filled. Once filled, it will remain filled, although some experiments may alter
its contents (none of the experiments performed here will do that, however). The
MIXture command is again used to fill the FEED tank, this time by taking one MOLE*
from the previously defined OIL mixture.

After filling the FEED tank, we are ready to issue the SATPressure command:

Mix Feed: 1 mole 0il, SATP

4.6. Injection Gases

Now let’s specify some injection gas compositions. First, we’ll specify a lean gas and a
rich gas. Then we’ll fill the special INJectant tank with a mixture of 35% enrichment:
0.35 moles of rich gas, with lean gas added to make up 1 total mole (TMOLE*). The

16

MMPz

INJectant mixture is always used as the injection gas in an MMP experiment (it is also
created by an MME experiment).

Mix Lean: 0.49 1.82 81.39 9.15 4.67 0.50
1.24 0.20 0.26 0.09 0.19

Mix Rich: 0.67 2.44 68.16 10.32 9.50 1.09
3.75 0.95 1.31 0.91 0.90

Mix Injectant: 0.35 moles Rich, 1 Tmole Lean

4.7. MMP Experiments

Now that we’ve set the temperature, the FEED, and the INJectant, we're ready to
calculate our first MMPs, using the MMP command:

MMP

MMP 100, ID "Original 0Oil, 35% Enriched Solvent"

The simplest form of the MMP command is just the MMP keyword, in which case it will
use 50 mixing stages, or cells, in performing its calculation. Then, however, we’ve
chosen to repeat the calculation using 100 stages. This second time, we’ve also chosen
to add an identifying character string with the optional ID subcommand.

4.8. MME Experiment

Now let’s calculate an MME with the MME command. Our current pressure is the 100-
stage MMP of the 35% enriched solvent. If we don’t change that pressure, and
calculate the 100-stage MME of our Lean gas with our Rich gas, the result should be
35%. Let’s also make a NOTE of that in both the input and output files:

Note: "Calculate the MME of the Lean gas with the Rich gasg"
Note: "at the MMP of a 35% enriched injectant. Thus, the"
Note: "MME should turn out to be 35%, if consistent."

MME Lean Rich 100
ID "Original 0il at MMP of 35% Enriched Solvent"

4.9. The Resultant MME Injectant

One effect of the MME command is to fill the INJectant tank with the resulting
mixture of gases having the minimum miscibility enrichment. If we want to view the
composition of this resulting mixture, the simplest way to do so is to refill the
INJectant tank with its own contents:

17

MMPz

Mix Injectant = Injectant

4.10. Depletion

Just for fun, let’s try calculating the MME of a depleted oil sample, but at the original
MMP. The first step is to STOre the current pressure (still the original oil’'s MMP).
Then, we FLASH the oil to a new pressure and fill the FEED tank with the resulting
equilibrium liquid (found in the EQLiquid tank). Finally, we REStore the pressure to
the original MMP:

Pressure: Store MMP
Pressure: 150 atm, Flash, Mix Feed: EQL
Pressure: Restore MMP

Notice that the MMP token above is simply a user-selected name to be used by the
STOre and REStore subcommands of the PRESsure command. It has nothing to do
with, nor does it conflict with, the MMP command.

4.11. Additional MME Experiment

Now that we have depleted the oil to 150 atm and restored the pressure to the original
MMP, let’s calculate the new MME, to see if it has been affected by the depletion:

MME Lean Rich, Stages 100
ID "Depleted 0Oil at Original MMP of 35% Enriched Solvent"

The only thing new here is the use of the STAGES subcommand to make it clearer that
100 stages are to be used.

4.12. Multicontact Miscibility Tests

When determining the miscibility or immiscibility of a given displacement process,
MMPz calculates a minimum measure of immiscibility at each stage of its multistage
simulation. Then, it extrapolates that minimum immiscibility to an infinite number of
stages to see if the process would remain immiscible or become miscible. If one wants
to check on the trend of the calculated immiscibilities, or on their extrapolation (to see
if enough stages are being used, perhaps), then one can use the MCM command to
perform a multicontact miscibility experiment.

While performing the multicontact miscibility experiment, we might also want to
check for any possible three-phase equilibria (which can wreak havoc on a reservoir
simulator). We simply use the TEST2 command to have MMPz test the
thermodynamic stability of all subsequent 2-phase equilibria. Warnings will be issued
if any 2-phase solutions are found to be unstable (i.e., if a third phase is indicated).

18

MMPz

Test2 All; (check the stability of all 2-phase solutions)

MCM 100 ID "Extrapolation Check"

4.13. Final Input File

The final input file, with a few additional comments, is shown below.
Echo ON

Title: "Simple MMPz Test Case"

Title: "Jessen-Michelsen-Stenby Fluid System"

Title: "SPE 50632"

Characterization "JMS (Tc-Tuned)", EOS = SRK

Component Tc (K) Pc (atm) AF MW
N2 126.200 33.6000 0.0400 28.016
coz2 304.200 72.9000 0.2280 44 .010
Cl 190.600 45.4000 0.0080 16.043
Cc2 305.400 48.2000 0.0980 30.069
C3 369.800 41.9000 0.1520 44 .096
i-Cc4 408.100 36.0000 0.1760 58.123
n-C_c4 425.200 37.5000 0.1930 58.123
i-C5 460.400 33.4000 0.2270 72.150
n-C5 469.600 33.3000 0.2510 72.150
(619) 507.400 29.3000 0.2960 86.177
c7 632.800 30.2987 0.1842 109.007
Cl1 659.605 23.4598 0.4773 175.327
Cle 703.646 19.2900 0.8197 256.674
c23 766.497 16.7852 1.2114 370.099
C33 830.500 15.1302 1.3718 590.374

MMPz

Binaries N2 CcOo2
Cl 0.02 0.12
C2 0.06 0.15
C3 0.08 0.15
i-Cc4 0.08 0.15
n-C_c4 0.08 0.15
i-C5 0.08 0.15
n-_C5 0.08 0.15
Ce 0.08 0.15
Cc7 0.08 0.15
Cl1 0.08 0.15
Cle 0.08 0.15
c23 0.08 0.15
C33 0.08 0.15

END; of characterization
* Define the original oil composition:
Mix 0Oil: 0.450 1.640 45.850 7.150 6.740

0.840 3.110 1.030 1.650 2.520
12.440 6.320 5.024 3.240 1.996

Temp = 387.45 K, Pres = 0 atm

Mix Feed: 1 mole 0il, SATP

* Define lean and rich gas compositions:

Mix Lean: 0.49 1.82 81.39 9.15 4.67 0.50
1.24 0.20 0.26 0.09 0.19

Mix Rich: 0.67 2.44 68.16 10.32 9.50 1.09
3.75 0.95 1.31 0.91 0.90

* Calculate the MMP of a 35% enriched injectant,
* first with 50 stages, then with 100:

Mix Injectant: 0.35 moles Rich, 1 Tmole Lean

MMP

MMP 100, ID "Original 0Oil, 35% Enriched Solvent"

* Set the temperature and initialize the pressure units:

* Calculate the saturation pressure of the original oil:

20

MMPz

Note: "Calculate the MME of the Lean gas with the Rich gasg"
Note: "at the MMP of a 35% enriched injectant. Thus, the"
Note: "MME should turn out to be 35%, if consistent."

MME Lean Rich 100
ID "Original 0il at MMP of 35% Enriched Solvent"

* View the resulting, minimum enriched injectant:

Mix Injectant = Injectant

* Deplete the o0il to 150 atm, but restore the pressure:
Pressure: Store MMP

Pressure: 150 atm, Flash, Mix Feed: EQL

Pressure: Restore MMP

* Calculate the new MME for the depleted oil:

MME Lean Rich, Stages 100
ID "Depleted 0Oil at Original MMP of 35% Enriched Solvent"

* Double-check the miscibility results:
Test2 All; (check the stability of all 2-phase solutions)

MCM 100 ID "Extrapolation Check"

21

MMPz

Chapter 5. Command Reference

This chapter describes all of MMPz’s commands in detail. The commands will be
ordered by relative importance, with the most important first.

5.1. Characterization Command

CHARacterization "name”
[EOS PR79|PR77|SRK|RK] [COMPonent..].. [BINARies..]..

Alias: PROPerties

The CHARacterization command initiates the input of a new EOS fluid
characterization (the characterization can be changed at any point in the input file).

Argument "name": this is the name of the characterization. It should appear
immediately after the CHARacterization keyword, on the same line (otherwise, the
rest of this line should remain blank). The name can be used later to RESTore a
previously defined characterization.

Option EOS: this defines the equation of state for this characterization. It can be
PR79: the 1979 version of the Peng-Robinson EOS.
PR77: the 1977 version of the Peng-Robinson EOS.
SRK: the Soave-Redlich-Kwong EOS.
RK: the Redlich-Kwong EOS.

5.1.1. Component Subcommand

COMPonent [MW#*] [TC] [PC] [AF*] [VShift]
[A] [B] [AMOD*] [BMOD*] [TB*] [SG¥*]
[vc]l [ZC] [VISVe] [VISZc] [PCHOR¥*]
[LMw*] [LTB*] [LSG*] [UMW*] [UTB*] [USG¥*]
[FULLname]

Alias: NAME *

The coOMPonent subcommand introduces the component properties table. It also
serves as the header keyword for the column of component names. Column header
keywords for the rest of the component properties listed in the table should be entered
after the coMPonent keyword, on the same line, in any order. The properties
themselves should be lined up underneath their corresponding headers according to
the rules given in section 3.8.

The component properties table can be divided into several sections by issuing the
COMPonent subcommand more than once. The first table must list all of the

22

MMPz

characterization’s components. Subsequent tables only need to list those components
that are to be assigned new properties, but new components cannot be introduced.

Table 5-1 lists the component properties that will affect MMPz calculations. Table 5-2
lists a number of other component properties that will be recognized on input and
written on output, but that won’t affect any of the calculations. They are included for
future compatibility with a Zick Technologies PVT program currently under
development.

Table 5-1. Component Properties That Will Affect MMPz Calculations

Keyword Property Type of Units Aliases
MW * Molecular Weight
TC Critical Temperature Temperature TCRit
PC Critical Pressure Pressure PCRit
AF* Acentric Factor ACentric
Vshift Volume Shift Factor VTran
A EOS Constant, Q,
B EOS Constant, Q;
AMOD* EOS Q, Modifier
BMOD* EOS Qg Modifier

Table 5-2. Component Properties That Won’t Affect MMPz Calculations

Keyword Property Type of Units Aliases
TB* Boiling Point Temperature Temperature
SG* Specific Gravity
vC Critical Volume Molar Volume VCRit
ZC Critical Z-Factor ZCRit
VISVc 8332?311*[\{:1111;me for Viscosity Molar Volume VCV*, VV*
vISZe 82132??11 t%(;ieslctor for Viscosity ZOV*, VZ*
PCHOR* Parachor PARAchor
LMW * Lower Molecular Weight
LTB* %,gvn\;%re]?gtigﬁeg Point Temperature
LSG* Lower Specific Gravity

23

MMPz

UMW * Upper Molecular Weight
UTB* "IFJ pper Boiling Point Temperature
emperature
USG* Upper Specific Gravity
FULL;am Full Name of Component

All of the properties require numerical input except FULLname, which requires
character string input. Some of the properties require physical units, which should be
specified according to the rules in section 3.8. The correct type of units (temperature,
e.g.) is given in Table 5-1 or Table 5-2 for each property. The keywords for the
available units of each type are given in Chapter 6.

COMPonent subcommand (component property table) examples are shown below.

Component Tc (K) Pc (atm) AF MW vVShift
N2 -0.0079
Cco2 0.0833
Methane 0.0234
Ethane 0.0605
Propane 0.0825
Butanes 425 .2 37.5 0.193 58.123 0.0902
Pentanes 469.6 33.3 0.251 72.150 0.1115
Hexanes 507.4 29.3 0.296 86.177 0.1467
Component \Ye! ~ZC Tb SG
ft3/1lbmol R

Butanes 4.080 0.2736 490.8 0.5844

Pentanes 4.870 0.2623 556.6 0.6301

Hexanes 5.929 0.2643 615.4 0.6604

5.1.2.Binaries Subcommand

BINARies [component-name]..
Alias: BIPS

The BINARies subcommand introduces the table of binary interaction parameters
(BIPs). It also serves as the header keyword for the first column, which will contain a
list of previously defined component names. Component names are also used for the
header keywords of the other columns in the table. Hence, component names identify
both the rows and the columns of the table, forming a matrix of component pairs.
Each entry in that matrix should be the interaction parameter of the corresponding
component pair. The table should be constructed according to the rules given in
section 3.8. An example is shown here:

24

MMPz

Binaries Cco2 C1l C30+

COo2 0.1150
Cl 0.1050 0.0928
c2-3 0.1300 0.0030 0.0750
C4-5 0.1150 0.0138 0.0527
Ce-7 0.1150 0.0276 0.0352
c8-10 0.1150 0.0362 0.0267
Cll-14 0.1150 0.0440 0.0201
Cl5-19 0.1150 0.0520 0.0143
C20-24 0.1150 0.0641 0.0074
C25-29 0.1150 0.0780 0.0021

The BIPs table can be divided into several sections by issuing the BINARies
subcommand more than once. MMPz will ensure that the final BIPs matrix will be
symmetric and that its diagonal will be zero. If the parameter for a component pair is
entered more than once, the last non-blank entry will take precedence. If there is no
non-blank entry for a component pair, then its parameter will default to zero.

5.2. Mixture Command
MIXture name [[amount] [unit] [tankl]..

The MIXture command is one of the most important in MMPz. It allows fluid
compositions to be assembled with great flexibility. It can be entered as frequently as
needed and can be spread out over as many lines as desired.

Argument name : this is the name of the destination tank in which the new mixture
will be stored (refer to the concepts described in Chapter 2). Once defined, this tank
can then be used in subsequent MIXture commands as a source tank.

The name of the tank can be any token that doesn’t conflict with any of the unit
keywords shown below, any of the current characterization’s component names, or
any of the reserved tank names: EQL*, EQV*, NFL*, or NFV* (these will be discussed
later).

The FEED tank is special. If the mixture is stored in the tank named FEED, then it
becomes the new feed mixture for the next set of phase behavior experiments. The
FEED tank must be filled at some point before the first experiment.

The INJectant tank is also special. An MMP experiment will always use the current
contents of the INJectant tank for its injection gas. This tank can be filled at any
time by a MIXture command with a name argument that matches the keyword
INJectant.

Arguments amount, unit, tank: one set of these three optional arguments forms an
ingredient. The MIXture command will read as many ingredients as it can find. The
three arguments of each ingredient can be input in any order, and each is optional,

25

MMPz

although one must be careful if the number or order of the arguments is changed from
ingredient to ingredient (more on this below).

Argument tank : this argument specifies the name of the source tank for the current
ingredient. It can be the name of a user-defined tank, one of the user-defined
component tanks, or one of MMPz’s pre-defined tanks (FEED, INJectant, EQLiquid,
EQVapor, NFLiquid, or NFVapor).

A user-defined tank always contains whatever the user last stored in it, in whatever
amount. A user-defined component tank always contains exactly 1 mole of the
corresponding, user-defined component.

The FEED tank contains whatever the user last stored in it, in whatever amount, until
any type of phase behavior calculation is performed, after which, the FEED tank will
contain exactly 1 mole of whatever the user last stored in it.

The INJectant tank normally contains whatever the user last stored in it. When an
MME command is executed, however, it will fill the INJectant tank with exactly 1
mole of the gas mixture it finds to have the minimum enrichment for miscibility.

The EQLiquid and EQVapor tanks will contain 1 mole of the equilibrium liquid and
equilibrium vapor, respectively, found during the most recent phase behavior
calculation. If the last phase behavior calculation found only one equilibrium phase,
then the EQLiquid and EQVapor tanks will both contain 1 mole of that overall phase.

The NFLiquid and NFVapor tanks will contain 1 mole of the negative flash' liquid and
negative flash vapor, respectively, found during the most recent phase behavior
calculation. If an equilibrium tie line passes through the overall composition of a fluid,
then the intersections of that tie line with the boundaries of the two-phase envelope
define the negative flash phase compositions, regardless of whether the overall
composition is inside or outside of the two-phase envelope. Negative flash phases are
always in equilibrium with each other. If the overall composition was within the two-
phase envelope during the last phase behavior calculation, then the contents of the
NFLiquid and NFVapor tanks will be exactly the same as the contents of the
EQLiquid and EQVapor tanks, respectively. If the overall composition was outside of
the two-phase envelope, but a tie line passing through it was found, then the
NFLiquid and NFVapor tanks will end up with the unique, negative flash
compositions, while the EQLiquid and EQVapor tanks will both end up with the
overall composition. If no tie line passing through the overall composition was found,
then the NFLiquid, NFVapor, EQLiquid, and EQVapor tanks will all end up with the
overall composition.

The default tank for an ingredient is the component tank following the last
component tank that went into the mixture (component tanks follow the same
ordering as their corresponding components). If no previous ingredient has used a
component tank, then the current ingredient’s default tank will be the first
component tank (the one containing the first defined component).

'Whitson, C.H., and Michelsen, M.L.: “The N egative Flash,” Fluid Phase Equilibria 53 (1989), 51.

26

MMPz

Note that the destination tank can also be used as a source tank. The contents of the
destination tank are not changed until after all of the sources are MIXed. There are
several examples of this given near the end of this section.

Argumentunit: this can be one of the following:

TANKs: the amount of the current ingredient will be measured in tankfuls of the
ingredient’s source tank, regardless of how many moles or how much
mass that tank might contain.

MOLEs: the amount of the current ingredient will be measured in mole units.

MASS*: the amount of the current ingredient will be measured in mass units.

TMOLEs: enough of the current ingredient will be added (or subtracted) to bring
the total moles of the current mixture to the specified amount.

TMASS*: enough of the current ingredient will be added (or subtracted) to bring
the total mass of the current mixture to the specified amount.

Note that a mixture can be constructed with some ingredients measured in mole
units, others in mass units, and still others in tankfuls, as long as the mole and mass
units remain consistent (kilograms are consistent with kg-moles, but not with lb-
moles, for example).

The default unit for an ingredient is the unit of the mixture’s previous ingredient,
while the mixture’s first ingredient has a default unit of TANKs.

Argument amount : This determines how much of the current ingredient, measured
in the ingredient’s unit, is to be added to the current mixture.

The default amount of an ingredient is 1 (regardless of the ingredient’s unit).

When the MIXture command looks for a new ingredient to be added, it will see if the
next three arguments include one of each type: amount,unit, and tank. If it
encounters a second argument of one type before it encounters one of each, however,
it will assume the duplicate belongs to the next ingredient. The current ingredient will
then be added, with default values for any missing arguments.

For the examples below, assume that three components have been defined: C1, C2,
and C3 (in that order). Assume also that their molecular weights are 16, 30, and 44,
respectively.

27

MMPz

; Resulting Moles : Resulting Masses
; Cl C2 C3 Cl C2 C3

Mix A: ; 0.0 0.0 0.0 0.0 0.0 0.0
Mix B: 2 1 ; 2.0 1.0 0.0 32.0 30.0 0.0
Mix C: C2 3 C3 2 ; 0.0 3.0 2.0 0.0 90.0 88.0
Mix C: 3 C2 2 C3 ; 0.0 3.0 2.0 0.0 90.0 88.0
Mix C: C2 3 2 ; 0.0 3.0 2.0 0.0 90.0 88.0
Mix C: 3 C2 2 ; 0.0 3.0 2.0 0.0 90.0 88.0
Mix D: 3 2 C3 ; 3.0 0.0 2.0 48.0 0.0 88.0
Mix C: C D ; 3.0 3.0 4.0 48.0 90.0 176.0
Mix D: 2 D ; 6.0 0.0 4.0 96 .0 0.0 176.0
Mix D: D 0.5 ; 3.0 0.0 2.0 48.0 0.0 88.0
Mix D: 1 mole D ; 0.6 0.0 0.4 9.6 0.0 17.6
Mix D: D mass 272 ; 6.0 0.0 4.0 96.0 0.0 176.0
Mix F: moles ;

Cl 4 ;

c2 2 ;

C3 ; 4.0 2.0 1.0 64 .0 60.0 44 .0
Mix G: masses ;

Cl 16 H

C2 30 ; :

C3 44 ; 1.0 1.0 1.0 : 16.0 30.0 44 .0
Mix H: ; :

0.2 G ; :

0.7 moles F ; 0.6 0.4 0.3 : 9.6 12.0 13.2
Mix H: ; :

G 0.2 ; :

F 0.7 moles ; 0.6 0.4 0.3 : 9.6 12.0 13.2
Mix H: ; :

0.7 moles F ; :

0.2 tanks G ; 0.6 0.4 0.3 : 9.6 12.0 13.2
Mix I: ; :

0.7 moles F ; :

0.3 tanks G ; 0.7 0.5 0.4 : 11.2 15.0 17.6
Mix J: ; :

0.7 moles F ;

0.3 G ; 0.5 0.3 0.2 8.0 9.0 8.8
Mix K: ;

0.7 moles F ; :

1.0 Tmole G ; 0.5 0.3 0.2 : 8.0 9.0 8.8
Mix L: ; :

1.0 moles C3 ;

100 Tmass C1 ; :

400 C2 ; 3.5 10.0 1.0 : 56.0 300.0 44 .0

MMPz

5.3. Temperature Command

TEMPerature [(value unit) | (unit [valuel)] [STOre name]..
[REStore saved [fraction [LINear |LOGarithmic]]]..

The TEMPerature command allows the temperature for subsequent phase behavior
calculations to be set, stored, and/or restored. It can be entered as frequently as
needed, but it must always fit on a single line.

Argument value: the temperature will be set to this value. The default is to not
change the temperature.

Argument unit: Theunit of temperature will be specified by this token, which can
by any of the keywords listed in Table 6-1. A unit can be specified without a value
(to change units without changing the temperature), but if a value is specified, then
the unit must also be specified.

Option sTOre (Alias: SAVe): this option allows the current temperature (whether or
not it has just been given a new value) to be STOred as a named temperature (for
later REStoration).

Argument name : this token will be the name assigned to a STOred temperature.

Option REStore: this option allows the temperature to be REStored to a previously
STOred temperature, or at least changed toward that STOred temperature by a
specified fraction, either LINearly or LOGarithmically.

Argument saved: this token must be a name under which a temperature was
previously STOred (or SAVed).

Argument fraction: the temperature will be changed by this fraction of the
distance from the current temperature (whether or not it has just been given a new
value) toward the saved temperature, either on a LINear scale or a LOGarithmic
scale. The fraction can be any number. By default, it is 1.

Option LINear: ifa fraction is specified with the LINear option (the default),
then this fraction of the difference between the current and the saved
temperatures (i.e., saved minus current) will be added to the current temperature.

Option LOGarithmic: ifa fraction is specified with the LOGarithmic option,
then this fraction of the difference between the logarithms of the absolute current
and the absolute saved temperatures (i.e., log of saved minus log of current) will be
added to the logarithm of the absolute current temperature.

Some examples are shown below.

29

MMPz

Temperature = 0 Celcius ; now 0 C
Temperature => Fahrenheit ; now 32 F
Temp store Freezing ; now 32 F
Temp 100 K ; now 100 K
Temp R, store Low ; now 180 R
Temp (C) : 100, store Boiling, restore Freezing ; now 32 F
Temp restore Boiling 0.4 ; now 40 C
Temp 1600 K, restore Low @ 0.75 Log-scaled ; now 360 R

5.4. Pressure Command

PRESsure [(value unit) | (unit [value]l)] [STOre namel..
[REStore saved [fraction [LINear |LOGarithmic]]]..

The PRESsure command allows the pressure for subsequent phase behavior
calculations to be set, stored, and/or restored. It can be entered as frequently as
needed, but it must always fit on a single line.

Argument value: the pressure will be set to this value. The default is to not change
the pressure.

Argument unit: Theunit of pressure will be specified by this token, which can by
any of the keywords listed in Table 6-2. A unit can be specified without a value (to
change units without changing the pressure), but if a value is specified, then the
unit must also be specified.

Option sTOre (Alias: SAVe): this option allows the current pressure (whether or not
it has just been given a new value) to be STOred as a named pressure (for later
REStoration). This can be particularly useful after a SATPressure or MMP
command.

Argument name : this token will be the name assigned to a STOred pressure.

Option REStore: this option allows the pressure to be REStored to a previously
STOred pressure, or at least changed toward that sSTOred pressure by a specified
fraction, either LINearly or LOGarithmically.

Argument saved: this token must be a name under which a pressure was previously
STOred (or SAVed).

Argument fraction: the pressure will be changed by this fraction of the distance
from the current pressure (whether or not it has just been given a new value) toward
the saved pressure, either on a LINear scale or a LOGarithmic scale. The fraction
can be any number. By default, it is 1.

30

MMPz

Option LINear: ifa fraction is specified with the LINear option (the default),
then this fraction of the difference between the current and the saved pressures
(i.e., saved minus current) will be added to the current pressure.

Option LOGarithmic: ifa fraction is specified with the LOGarithmic option,
then this fraction of the difference between the logarithms of the absolute current
and the absolute saved pressures (i.e., log of saved minus log of current) will be
added to the logarithm of the absolute current pressure.

Some examples are shown below.

Pressure = 0 psig ; now 0 psig
Pressure => atm ; now 1l atm
PRES store Ambient ; TIOW 1 atm
PRES (BAR) 0, store Zero ; now 0 bar
PRES 40.53 MPa ; now 40.53 MPa
PRES restore Zero 0.5 ; now 202.65 bar
PRES restore Zero 0.5 ; now 101.325 bar
PRES restore Ambient 0.5 log ; now 10 atm
5.5. MMP Command

MMP [stages] [ID "identifier"] [STAGES stages]
[DATum ((mmp unit) | (unit mmp)) [WEIGht wt]]

The MMP command computes the minimum miscibility pressure for the displacement
of the FEED tank’s fluid by the INJectant tank’s fluid at the current TEMPerature. It
uses a proprietary, iterative, multistage, multicontact algorithm to determine the
minimum miscibility pressure no matter what the displacement mechanism
(condensing, vaporizing, or condensing/vaporizing gas drive). The MMP command will
normally use the currently assigned PRESsure as one of its initial guesses. As it
finishes, the MMP command will set the current PRESsure to the calculated minimum
miscibility pressure.

Argument stages: this argument, if present, can appear immediately after the MMP
keyword, or after an optional STAGES (or CELLS) keyword. It sets the number of
stages to be used during the multistage calculations. Increasing the number of
stages can improve the expected accuracy of the solution, but at the expense of
increased computation time. The default of 50 stages is usually enough to compute an
MMP within about 2% of the true solution, although the displacement mechanism can
sometimes be so complicated that it will require more than the usual number of stages
to develop fully. It is recommended that important calculations be performed with 50,
100, and perhaps 200 stages, with a careful inspection of the results. For an accuracy
within 0.5%, one would rarely require more than 200 stages. The results should not be
extrapolated to an infinite number of stages, however. The results will have already
been extrapolated and will often approach the true solution non-monotonically. The
best one can say is that the likelihood of a given accuracy increases with the number of

31

MMPz

stages. For a fixed number of stages, however, the results will be consistent and
differentiable with respect to changes in temperature, composition, and the fluid
characterization.

Note: If a negative number of stages is specified, then the multistage,
condensing/vaporizing calculations will not be performed. The minimum pressure for
condensing or vaporizing gas drive miscibility will be determined from single-cell
calculations (using the absolute value of the specified number of stages as the
number of contacts), but this pressure may not be the true MMP, so this option should
be used only with caution.

Option ID: this option can be used to input a character string to help identify the
current MMP experiment.

Argument "identifier": this can be any character string.

Option STAGES (Alias: CELLS): this option can be used as an alternate means of
specifying the number of stages.

Option DATum (Alias: MEASurement): this option can be used to input the
experimental MMP, with which the calculated MMP can be compared on output.

Argument mmp : the experimental MMP.

Argument unit: Theunit of pressure for the experimental MMP is specified by this
token, which can by any of the keywords listed in Table 6-2.

Option WEIGht (Aliases: WT, WGT, WGHt): this option can be used as part of the
DATum option to assign a weight factor to the relative error between the calculated
MMP and the experimental MMP. The weighted average of all such errors will be
displayed at the end of the output file.

Argument wt : the weight factor for the relative error between the calculated MMP
and the experimental MMP. By default, this weight factor will be 1.

5.6. MME Command

MME gasl gas2 [stages] [ID "identifier"] [STAGES stages]
[DATum (mme| (mme %) | (% mme)) [WEIGht wt]]

The MME command computes the minimum miscibility enrichment of a lean gas with
a rich gas for the displacement of the FEED tank’s fluid at the current TEMPerature
and PRESsure. [t uses a proprietary, iterative, multistage, multicontact algorithm to
determine the minimum miscibility enrichment no matter what the displacement
mechanism (condensing, vaporizing, or condensing/vaporizing gas drive). As it
finishes, the MME command will fill the INJectant tank with one mole of the resulting
mixture of two specified gases, gas1 and gas2, having the minimum enrichment for
miscibility. MMPz will automatically determine the leaner and the richer of these two
gases, so the order in which they’re specified doesn’t matter.

32

MMPz

Argument gasl: this should be the name of the tank containing the first of the two
gases to be mixed into the final injectant.

Argument gas2: this should be the name of the tank containing the second of the
two gases to be mixed into the final injectant.

Argument stages: this argument, if present, can appear immediately after the gas2
token, or after an optional STAGES (or CELLS) keyword. It sets the number of stages
to be used during the multistage calculations. Increasing the number of stages can
improve the expected accuracy of the solution, but at the expense of increased
computation time. The default of 50 stages is usually enough to compute an MME
within about 2% of the true solution, although the displacement mechanism can
sometimes be so complicated that it will require more than the usual number of stages
to develop fully. It is recommended that important calculations be performed with 50,
100, and perhaps 200 stages, with a careful inspection of the results. For an accuracy
within 0.5%, one would rarely require more than 200 stages. The results should not be
extrapolated to an infinite number of stages, however. The results will have already
been extrapolated and will often approach the true solution non-monotonically. The
best one can say is that the likelihood of a given accuracy increases with the number of
stages. For a fixed number of stages, however, the results will be consistent and
differentiable with respect to changes in temperature, composition, and the fluid
characterization.

Note: If a negative number of stages is specified, then the multistage,
condensing/vaporizing calculations will not be performed. The minimum enrichment
for condensing or vaporizing gas drive miscibility will be determined from single-cell
calculations (using the absolute value of the specified number of stages as the
number of contacts), but this enrichment may not be the true MME, so this option
should be used only with caution.

Option ID: this option can be used to input a character string to help identify the
current MME experiment.

Argument "identifier": this can be any character string.

Option STAGES (Alias: CELLS): this option can be used as an alternate means of
specifying the number of stages.

Option DATum (Alias: MEASurement): this option can be used to input the
experimental MME, with which the calculated MME can be compared on output.

Argument mme : the experimental MME, i.e., the minimum fraction (or percentage, if
preceded or followed by the % argument) of the enriching gas (the richer of gas1 and
gas?2) in a miscible injectant made up of gas1 and gas?2.

Argument % : this token, either before or after (and delimited from) the mme
argument, indicates that the experimental mme is specified as a percentage instead of
as a fraction (the default).

33

MMPz

Option WEIGht (Aliases: WT, WGT, WGHt): this option can be used as part of the
DATum option to assign a weight factor to the error between the calculated MME and
the experimental MME. The weighted average of all such errors will be displayed at the
end of the output file.

Argument wt : the weight factor for the error between the calculated MME and the
experimental MME. By default, this weight factor will be 1.

5.7. MCM Command
MCM [stages] [ID "identifier"] [STAGES stages]

The MCM command computes a measure of minimum immiscibility as a function of
the displacement stage for a single displacement of the FEED tank’s fluid by the
INJectant tank’s fluid at the current TEMPerature and PRESsure. It uses a
proprietary, multistage, multicontact algorithm to determine the closest approach to
miscibility at each stage for each of the possible displacement mechanisms
(condensing, vaporizing, and condensing/vaporizing gas drive). These results can be
used to help judge how many stages might be necessary to produce reliable results
with the MMP or MME command.

Argument stages: this argument, if present, can appear immediately after the McM
keyword, or after an optional STAGES (or CELLS) keyword. It sets the maximum
number of stages to be used during the multistage calculations of immiscibility. The
default number of stages is 50. The recommended use of the MCM command is to
see how many stages it takes for the calculated immiscibilities to begin converging
predictably. This is the minimum number of stages that should be used in a similar
MMP or MME experiment.

Note: If a negative number of stages is specified, then the multistage,
condensing/vaporizing calculations will not be performed. Only the condensing and
vaporizing gas drive immiscibilities will be determined (from single-cell calculations,
using the absolute value of the specified number of stages as the number of
contacts).

Option ID: this option can be used to input a character string to help identify the
current MCM experiment.

Argument "identifier": this can be any character string.

Option STAGES (Alias: CELLS): this option can be used as an alternate means of
specifying the number of stages.

5.8. Flash Command

FLASH

34

MMPz

The FLASH command performs a two-phase equilibrium flash calculation on the
contents of the FEED tank at the current TEMPerature and PRESsure. Besides
printing its results, it will also fill the EQLiquid and EQVapor tanks with one mole
(each) of the corresponding equilibrium phase and the NFLiquid and NFVapor tanks
with one mole (each) of the corresponding negative flash phase (see the discussion of
these tanks and phases in section 5.2). In addition, the FEED tank will exit the FLASH
command containing exactly one mole of its original contents.

5.9. Saturation Pressure Command

SATPressure
Aliases: PSAT*, BUBP*, PBUB*.

The sATP* command finds (when possible) the upper saturation pressure of the
contents of the FEED tank at the current TEMPerature, using the current PRESsure
(if positive) as its initial guess. In addition to reporting its results, it will change the
current PRESsure to the calculated saturation pressure. It will also fill the EQLiquid
and EQVapor tanks (as well as the NFLiquid and NFVapor tanks) with one mole
(each) of the appropriate equilibrium phase (see the discussion of these tanks and
phases in section 5.2). In addition, the FEED tank will exit the SATP* command
containing exactly one mole of its original contents.

If the fluid appears to be single phase at all pressures, the SATP* command will issue a
warning and calculate a pseudo vapor pressure instead of a true saturation pressure
(see the vAPP* command below). If a saturation pressure does exist in such a case, a
better initial guess will be required to find it.

If the fluid appears to have an infinite saturation pressure, the SATP* command will
issue a warning and report the two-phase equilibrium found at the last (extremely
high) pressure tested.

5.10. Dew Point Pressure Command

DEWPressure
Alias: PDEW*.

The DEWP* command finds (when possible) the lower saturation pressure (i.e., the
lower dew point pressure) of the contents of the FEED tank at the current
TEMPerature, using the current PRESsure (if positive) as its initial guess. In addition
to reporting its results, it will change the current PRESsure to the calculated dew
point pressure. It will also fill the EQLiquid and EQVapor tanks (as well as the
NFLiquid and NFVapor tanks) with one mole (each) of the appropriate equilibrium
phase (see the discussion of these tanks and phases in section 5.2). In addition, the
FEED tank will exit the DEWP* command containing exactly one mole of its original
contents.

35

MMPz

If the fluid appears to be single phase at all pressures, the DEWP* command will issue a
warning and calculate a pseudo vapor pressure instead of a true saturation pressure
(see the vAPP* command below). If a dew point pressure does exist in such a case, a
better initial guess will be required to find it.

5.11. Vapor Pressure Command

VAPPressure
Alias: VAPR*.

The vaPP* command finds the pseudo vapor pressure of the contents of the FEED tank
at the current TEMPerature.

For a pure component at a temperature below its critical, the VAPP* command will
find the component’s true vapor pressure. Above the component’s critical
temperature, however, it will find a pressure that is on a continuous extension of the
component’s vapor pressure (versus temperature) curve. This will be a pseudo vapor
pressure.

The vAPP* command treats mixtures as though they were single components (with
properties that have been averaged by the equation of state’s mixing rules). It finds the
pseudo vapor pressure of this pseudo component in the manner described above for
true components. The fluid will be treated as a single phase, but at the transition
between liquid and vapor. The VAPP* command will not attempt to perform a true
phase split calculation (that can always be done by a subsequent FLASH command).

In addition to reporting its results, the VAPP* command will change the current
PRESsure to the calculated pseudo vapor pressure. It will also fill the EQLiquid and
EQVapor tanks (as well as the NFLiquid and NFVapor tanks) with one mole (each) of
the overall FEED mixture (see the discussion of these tanks in section 5.2). In addition,
the FEED tank will exit the VAPP* command containing exactly one mole of its original
contents.

5.12. Title Command

TITLe "title" [TITLe "subtitle']..

The TITLe command causes a single or multiple line title to be printed to the output
file, in sequence with the output of the surrounding commands. It is similar to the
NOTE* command below, but titles and notes are formatted differently.

Argument "title”: this can be any character string. It will form the title (or the first
line of a multiple line title).

Subcommand TITLe (Alias: SUBTitle): this optional subcommand allows subtitles
to be added to the main title to form a multiple line title. It can be repeated as often as
desired.

MMPz

Argument "subtitle”: this can be any character string. It will form a subtitle line
in a multiple line title.

5.13. Note Command

NOTE* "note" [NOTE* "subnote']..
Alias: COMMent.

The NOTE* command causes a single or multiple line note to be printed to the output
file, in sequence with the output of the surrounding commands. It is similar to the
TITLe command above, but notes and titles are formatted differently.

Argument "note" : this can be any character string. It will form the note (or the first
line of a multiple line note).

Subcommand NOTE* (Alias: COMMent): this optional subcommand allows subnotes
to be added to the main note to form a multiple line note. It can be repeated as often
as desired.

Argument "subnote": this can be any character string. It will form a subnote line in
a multiple line note.

5.14. TEST2 Command

TEST2* [SUSPect|ALways|NEVer]

The TEST2* command dictates the circumstances under which MMPz will test the
thermodynamic stability’ of subsequently calculated 2-phase and negative flash
equilibria, looking for the presence of 3-phase equilibria or a more stable 2-phase
solution.

MMPz is not designed to calculate 3-phase equilibria, but it does have the ability to
detect when a third equilibrium phase is due to appear. It can be very useful to know
about such situations (so they can perhaps be avoided), because they will create
severe numerical difficulties for most reservoir simulators.

MMPz can detect the imminent appearance of a third equilibrium phase only by
testing a calculated 2-phase equilibrium solution for thermodynamic stability. This
would normally be a waste of time, since 3-phase equilibria are not usually found at
typical reservoir conditions. If the conditions of interest are somewhat atypical,
however (low temperatures combined with high concentrations of carbon dioxide, for
example), then MMPz can be directed to test all of its 2-phase solutions.

Whenever MMPz tests its 2-phase solutions for thermodynamic stability, it will also
test its negative flash solutions. If any solutions are found to be thermodynamically

! Michelsen, M.L.: “The Isothermal Flash Problem. Part I. Stability,” Fluid Phase Equilibria9 (1982), 1.

MMPz

unstable, then MMPz will find a new 2-phase solution that is more stable. The testing
process will be repeated until the most stable 2-phase solution is found. If the most
stable 2-phase solution is still unstable, MMPz will report on the fact that true
equilibrium would require at least three phases.

Option sUSPect (Alias: DEFault): this DEFault option causes MMPz to test its 2-
phase and negative flash solutions for thermodynamic stability only when it has its
own reasons to SUSPect the possibility of multiple 2-phase solutions. This should
cover the most obvious circumstances for multiple solutions and 3-phase equilibria,
but certainly not all.

Option ALways (Aliases: ON, MAXimum): this option causes MMPz to ALways test its
2-phase and negative flash solutions for thermodynamic stability. It will detect all of
the multiple and 3-phase solutions it can, but at the expense of additional
computation time.

Option NEVer (Aliases: NOne, OFF, MINimum): this option causes MMPz to NEVer
test its 2-phase and negative flash solutions for thermodynamic stability, even when it
suspects the possibility of multiple solutions. This option should be used only if
multiple solutions or 3-phase equilibria are known to be absent or of no importance.

5.15. TEST1 Command

TEST1* [SUSPect|ALways|NEVer]

The TEST1* command dictates the circumstances under which MMPz will test the
thermodynamic stability of trivial solutions from subsequent phase equilibrium
calculations.

A 2-phase flash calculation can result in 2-phase equilibrium, negative flash
equilibrium, or a frivial solution. A trivial solution is one in which the two resulting
phases are identical. A trivial solution can always be found, but the objective is to find
a nontrivial solution, if one exists.

If a nontrivial flash solution exists, then MMPz will almost always find it, given a
reasonable initial guess. If it finds a trivial solution, instead, it almost always means
that there is no other solution. Very infrequently, however, it means that the initial
guess wasn’t good enough. To make absolutely sure that there is no 2-phase solution
(at the expense of additional calculations), MMPz can be directed to test the
thermodynamic stability of the trivial solution.

Option sUSPect (Alias: DEFault): this DEFault option causes MMPz to test its
trivial flash solutions for thermodynamic stability only when it has its own reasons to
SuSPect the existence of a nontrivial solutions. This should cover the most obvious
circumstances where nontrivial solutions are expected, but not all.

Option ALways (Aliases: TRIVial, CRITical, ON, MAXimum): this option causes
MMPz to ALways test its trivial flash solutions for thermodynamic stability. If there is
a 2-phase solution, this will ensure its detection. This is the safest option, but it

38

MMPz

requires additional computations and it is very seldom necessary. It is most likely to
be useful for sequences of flash calculations that are not very closely related, where
the initial guesses might be poor.

Option NEVer (Aliases: NOne, OFF, MINimum): this option causes MMPz to NEVer
test its trivial flash solutions for thermodynamic stability, even when it suspects the
existence of a nontrivial solution. The only purpose for this option is to force the
tracking of a particular solution branch in a system with multiple solutions, which is
usually of academic interest only.

5.16. INIT2 Command

INIT2* [PRevious|WILson|STability|SKIP]

The INIT2* command determines how MMPz will attempt to initialize its subsequent
equilibrium flash calculations.

Option PRevious (Aliases: Kvalues, DEFault): this DEFault option causes MMPz
to initialize each equilibrium flash calculation with the K-values from the solution of
the PRevious equilibrium calculation, whenever it’s nontrivial. If that’s not possible,
it automatically reverts to the STability option. The PRevious option is usually the
fastest. It will also find negative flash solutions as well as 2-phase solutions. Very
infrequently, it may converge to an unwanted trivial solution. If that’s a concern, the
ALways option of the TEST1* command can be used as a safeguard.

Option WILson: this option causes MMPz to initialize each equilibrium flash
calculation with the K-values from the commonly used WILson equation.' This option
is not generally recommended, however.

Option STability: this option causes MMPz to initialize each equilibrium flash
calculation by testing the thermodynamic STABility of the overall, single-phase
fluid. This option is practically guaranteed to find a 2-phase solution, if one exists, but
it is usually slower than the PRevious option, and it is much less likely to find any
negative flash solutions. The STability option is very safe at finding 2-phase
solutions, but the same safety can be achieved by combining the PRevious option
with the ALways option of the TEST1* command.

Option SKIP (Aliases: NEVER, NOne, OFF): this option causes MMPz to SKIP all

subsequent phase split calculations until directed otherwise. It will instead assume
that all fluids remain single-phase.

5.17. Stability Command

STABility [ON|OFF]

' Whitson, C.H., and Brulé, M.R.: Phase Behavior, Monograph Series, SPE, Richardson, Texas (2000), 42.

39

MMPz

The sSTABility command will direct MMPz to use thermodynamic stability testing as
much as possible, or only as needed. It is actually a shortcut for setting common
options of the INIT2*, TEST1*, and TEST2* commands simultaneously.

Option ON (Aliases: YES, Y, TRUE, T): this option is equivalent to the following
sequence of commands:

INIT2 Stability, TEST1 Always, TEST2 Always

Option OFF (Aliases: NO*, N, FALSE, F): this option is equivalent to the following
sequence of commands:

INIT2 Default, TEST1 Default, TEST2 Default

5.18. Equation of State Command

EOS [PR79|PR77|SRK|RK]

Alias: EQUA*.

The E0os command sets the default equation of state for subsequent fluid
characterizations (although each characterization is free to override this default with
its own EOS option).

Option PR79: the 1979 version of the Peng-Robinson EOS will now be the default.
Option PR77: the 1977 version of the Peng-Robinson EOS will now be the default.
Option SRK: the Soave-Redlich-Kwong EOS will now be the default.

Option RK: the Redlich-Kwong EOS will now be the default.

5.19. Tabs Command

TABS positions

The TABS command tells MMPz how many character positions are represented by
each tab character in the input file. This command allows MMPz to correctly read
tables that were visually aligned in a text editor with a combination of tabs and spaces
(see the complete discussion of this subject in 3.8.1).

Argument positions: this should be the number of character positions
represented by each tab. This should correspond to the tab setting in the text editor
that was used to align subsequent tables.

40

MMPz

5.20. End-of-File Command

EOF

The EOF command indicates that the end of the current input file has been reached.
Anything in the file after this command will be ignored.

5.21. End Command
END
This command can be used (instead of a blank line) to signal the END of a table. It can

also be used to signal the END of the previous command, in the rare case of
ambiguities. For example, consider the following sequence of commands:

Mix temp feed
Mix feed oil
Temp 60 F
Flash

Mix feed temp

The intent may have been to save the contents of the FEED tank in a temporary tank
called temp, then to change the contents of the FEED tank, perform a FLASH
calculation at a new TEMPerature of 60 F, and then to restore the original contents of
the FEED tank. Because of the unfortunate choice of temp for a tank name, however,
MMPz will interpret this sequence of commands as:

Mix temp: 1 tank feed END

Mix feed: 1 tank oil, 60 tanks temp END
F END; ERROR! Command F not recognized!
Flash END

Mix feed: 1 tank temp END

Without changing the name of the temporary tank, the original sequence would have
been okay with the insertion of a single END command, to make sure the
TEMPerature command was not misinterpreted as the tank name, temp:

Mix temp feed
Mix feed oil END
Temp 60 F

Flash

Mix feed temp

41

MMPz

5.22. Include Command

INCLude "filename"

The INCLude command causes MMPz to pause in its reading of the current input file,
to read another input file (as though its input were INCLuded in the original file), and
then to return to reading the rest of the original file.

The INCLude command can be nested to any desired level (INCLuded files can
INCLude other files, which can also INCLude files, and so on). It can be issued
wherever any command is expected, and in most instances wherever a subcommand
is expected. In the latter case, the previous command will continue looking for
subcommands within the newly INCLuded file.

Argument "filename"”: this can be any character string specifying the name of the
file to be INCLuded. It can specify either a full path name or a partial path name to the
file, as long as it is recognized by the computer’s operating system. Partial paths
should be specified relative to the current directory. This is normally the directory in
which the current input file (the one issuing the current INCLude command) resides.
The current directory can be changed, however, with the cb command (see below).
Anything on the end of the line (following the "filename" argument) will be ignored.

For an example, suppose a computer is running a Windows operating system and
contains the following files:

D:\MMPz\Data\input.dat
D:\MMPz\Data\expts.dat
D:\MMPz\Data\Fluids\fluid.dat
D:\MMPz\sample.dat
D:\MMPz\Tests\test.dat
E:\MMPz\Examples\example.dat

These INCLude commands would all work within the input . dat file:

Include "expts.dat"

Include "Fluids\fluid.dat"

Include "\MMPz\sample.dat"

Include "D:\MMPz\sample.dat"

Include "..\sample.dat"

Include "..\Tests\test.dat"

Include "E:\MMPz\Examples\example.dat"

Now suppose a computer is running a Macintosh operating system and contains the
following files:

D:MMPz:Data:input.dat
D:MMPz:Data:expts.dat
D:MMPz:Data:Fluids:fluid.dat

42

MMPz

D:MMPz:sample.dat
D:MMPz:Tests:test.dat
E:MMPz:Examples:example.dat
These INCLude commands would all work within the input . dat file:

Include "expts.dat"
Include ":expts.dat"
Include ":Fluids:fluid.dat"
Include "D:MMPz:sample.dat"

Include "::sample.dat"
Include "::Tests:test.dat"”
Include ":::MMPz:Tests:test.dat"

Include "E:MMPz:Examples:example.dat"

5.23. Current Directory Command

CD "directory"

The ¢D command can make it easier to use the INCLude command. When an input
file INCLudes another file, the path to that file needs to be specified relative to the
current directory. This is normally the directory in which the current input file (the one
issuing the current INCLude command) resides. However, the ¢D command can make
any other directory the current directory. Subsequent INCLude and CD commands
would then search for files and directories within (or relative to) this new current
directory.

The effect of the ¢D command continues until the next cD command or until the end
of the current file, whichever comes first. It will not carry back to any file that may
have INCLuded the current file. It can be issued wherever any command is expected,
and in most instances wherever a subcommand is expected. In the latter case, the
previous command will continue looking for subcommands after the cD command
has been processed.

Argument "directory": this can be any character string specifying the full or
partial path, relative to the current directory (initially, the one in which the current
input file resides), to a new current directory. The path must be recognized as a legal
directory path by the computer’s operating system. Subsequent INCLude and CD
commands within the current input file must then specify their file and directory path
arguments relative to this new current directory.

For an example, suppose a computer is running a Windows operating system and
contains the following files:

D:\MMPz\Data\input.dat
D:\MMPz\Data\expts.dat
D:\MMPz\Data\Fluids\fluid.dat
D:\MMPz\sample.dat

43

MMPz

D:\MMPz\Tests\test.dat
E:\MMPz\Examples\example.dat
This sequence of commands would work within the input . dat file:

CD "Fluids™"

Include "fluid.dat"
CDh ..

Include expts.dat
CD "..\Tests"
Include "test.dat"
CD "\MMPz\"

Include "sample.dat"
CD "E:\MMPz\Examples"
Include "example.dat"

Now suppose a computer is running a Macintosh operating system and contains the
following files:

D:MMPz:Data:input.dat
:MMPz:Data:expts.dat
:MMPz:Data:Fluids:fluid.dat
:MMPz:sample.dat
:MMPz:Tests:test.dat
E:MMPz:Examples:example.dat
This sequence of commands would work within the input . dat file:

D
D
D
D

CD ":Fluids™"
Include "fluid.dat"

CD ".."
Include expts.dat
CD "::Testg"

Include "test.dat"

CD "D:MMPz:"

Include "sample.dat"
CD "E:MMPz:Examples"
Include "example.dat"

5.24. Define Command

DEFine "macro" "replacement"

This command DEFines a "macro" string and its "replacement " string. From this
point on, any string of characters ?macro? (the "macro" string quoted by question
marks, regardless of the surrounding characters) will be replaced by the text of the
"replacement " string.

44

MMPz

Argument "macro”: any character string.
Argument "replacement": any character string.

Examples:

Define "std temp" "60 F"

Temp ?std temp? ; equivalent to: Temp 60 F

Define "dir name" "Test Files"
Define "root name" "test"
Define "extension" ".dat"

Include "?dir name?\?root name??extension?"
Include "?dir name?\?root name?l?extension?"

The two previous commands were equivalent to:
Include "Test Files\test.dat"
Include "Test Files\testl.dat"

5.25. Echo Command
ECHO [ON|OFF]

The ECHO command determines whether subsequent lines of input will be copied, or
echoed, to the standard output file. ECHO is OFF, initially.

Option ON (Aliases: YES, Y, TRUE, T): this option activates the echoing.

Option OFF (Aliases: NO*, N, FALSE, F): this option deactivates the echoing.

5.26. Timing Command
TIMing

The TIMing command causes the current execution time (at the moment the
command is executed) to be reported.

MMPz

Chapter 6. Units
The tables in this chapter list the keywords for the available units of each physical type
understood by MMPz.
Table 6-1. Temperature Units
Units Keyword(s)
Celcius C, CEL*
Fahrenheit F, FAH*
Kelvin K, KEL*
Rankine R, RAN*
Table 6-2. Pressure Units
Units Keyword(s)
Atmospheres (absolute) ATM, ATMA
Atmospheres (gauge) ATMG
Bar (absolute) BAR, BARA
Bar (gauge) BARG
Pascal (absolute) PA, PAA
Pascal (gauge) PAG
KiloPascal (absolute) KPA, KPAA
KiloPascal (gauge) KPAG
MegaPascal (absolute) MPA, MPAA
MegaPascal (gauge) MPAG
Pounds per square inch (absolute) PSI, PSIA
Pounds per square inch (gauge) PSIG
Torr (absolute) TORR, TORRA
Torr (gauge) TORRG

MMPz

Table 6-3. Molar Volume Units

Units

Keyword(s)

Cubic centimeters per gram-mole

CM3 /MOL, CM3/GMOL,
CC/MOL, CC/GMOL

Cubic meters per kilogram-mole

M3 /KMOL, M3/KGMOL

Liters per gram-mole

L/MOL, L/GMOL

Liters per kilogram-mole

L/KMOL, L/KGMOL

Cubic decimeters per kilogram-mole

DM3 /KMOL, DM3/KGMOL

Cubic feet per pound-mole

FT3/LBMOL, CF/LBMOL

Gallons per pound-mole GAL/LBMOL
Barrels per pound-mole BBL/LBMOL
Thousands of cubic feet per pound-mole MCF/LBMOL
Millions of cubic feet per pound-mole MMCF /LBMOL
Cubic meters per standard cubic meter M3 /SM3
Liters per standard cubic meter L/SM3
Cubic decimeters per standard cubic meter DM3 /SM3

Cubic centimeters per standard cubic meter

CM3/SM3, CC/SM3

Cubic feet per standard cubic foot

FT3/SCF, CF/SCF,
MCF/MSCF

Cubic feet per thousand standard cubic feet

FT3/MSCF, CF/MSCF,

MCF/MMSCF
Gallons per standard cubic foot GAL/SCF
Gallons per thousand standard cubic feet GAL/MSCF
Gallons per million standard cubic feet GAL/MMSCF
Barrels per standard cubic foot BBL/SCF
Barrels per thousand standard cubic feet BBL/MSCF
Barrels per million standard cubic feet BBL/MMSCF

47

MMPz

Chapter 7. Running MMPz

MMPz is available as a 32-bit Windows application, or as a Macintosh application.
This chapter provides instructions for running MMPz on these two platforms. Unix or
Linux versions of MMPz may be available by special request. Contact Zick
Technologies for more information.

7.1. Windows Version

MMPz consists of a single, executable file. It can be installed in any directory on a
Windows system, although it might be a good idea to install it among other, similar
applications. It may also be a good idea to place a Shortcut to MMPz in one or more
convenient locations (on the Desktop, for example). If MMPz is to be launched from a
command line prompt, it may prove convenient to add its location to the environment
variable, PATH, in the autoexec.bat file. If these suggestions aren’t clear, ask a
Systems Administrator for assistance.

MMPz can be launched in several different ways. The easiest is probably to double-
click on its icon (or on that of a Shortcut—f{rom now on, this will go without saying).
Dialog boxes will then allow the user to specify the input and output files.

Another method is to drag the icon for the input file onto MMPzZ's icon. A dialog box
will then allow the user to specify the output file.

The user can also select a pair of file icons and drag them together onto the MMPz
icon. The file whose icon is under the cursor during the dragging operation will be
opened as the input file. The other file will be overwritten as the output file. Be careful
not to confuse the two!

MMPz can also be launched from a command line by entering the name of the
program at the prompt. Depending on the location of the program, the current
working directory, and the current setting of the PATH variable, the name may or may
not have to include a path to the program’s directory. Again, if this is confusing, ask a
Systems Administrator for assistance. Up to two arguments can follow the program
name on the command line. The first argument would be the name of the input file.
Its path should be specified relative to the current working directory. The second
argument would be the name of the output file, again specified relative to the current
working directory. If less than two file names are entered, the user will be prompted
for the missing information.

Whenever it’s necessary for MMPz to prompt the user for the name of an output file, it
will generate a suggested name from the name of the input file, usually by changing its
extension to “.out”. In order to see the extensions (so as not to confuse output files
with input files), it may be necessary to deselect the “Hide file extensions...” check box
in the View panel of the “Folder Options...” dialog, which can be opened from the
View menu of any window (again, ask a Systems Administrator for assistance, or better
yet, buy a Mac).

48

MMPz

7.2. Macintosh Version

MMPz consists of a single, application file. It can be installed in any folder on a
Macintosh system, although it might be a good idea to install it among other, similar
applications. It may also be a good idea to place an Alias to MMPz in one or more
convenient locations (on the Desktop or in the “Apple Menu Items” folder, for
example).

MMPz can be launched by double-clicking on its icon (or that of an Alias). If it (or an
Alias) has been placed in the “Apple Menu Items” folder, then it can also be launched
from the Apple Menu. Once launched, dialog boxes will allow the user to specify the
input and output files.

7.3.Console1/0

Regardless of platform, when MMPz is launched, it will open a console window on the
screen. As it is running, it will continuously write progress information to that window.
When the program is finished, the window can be dismissed.

If the standard output file is named “@” (without the quote marks), then all output will
be written only to the console window. This is probably not very practical, however,
except perhaps for very small jobs.

If no input file is specified (i.e., if the dialog box for the input file is canceled), then
input will be accepted interactively from the console window. This is practical only for
entering a small number of commands (perhaps a few INCLude commands).

7.4. Input Files

Regardless of platform, MMPz can read input files created on any other platform.
There is no restriction on file size or line length.

Files can be created in text editors, word processors, or spreadsheet programs. They
should always be saved as text-only files, however. Tab-delimited text files are
perfectly acceptable, as long as the advice in section 3.8.1 is followed.

For MMPz to open an input file, the file must not be open in any other application.
This ensures that the file cannot be accidentally overwritten while in use. It also makes
it impossible for an input file to INCLude itself, which would result in an infinite
loop—never a good thing.

7.5. Problems

MMPz has been thoroughly tested, but no program can be guaranteed free of bugs.
Please report any problems to Zick Technologies. If there are any defects in the
program, they will be promptly fixed.

49

	MMPz
	Contents
	Chapter 1. Introduction
	Chapter 2. Concepts
	Chapter 3. Conventions
	3.1. Comments
	3.1.1. Comment Lines
	3.1.2. Trailing Comments

	3.2. Tokens
	Table 3–1. Token Characters

	3.3. Numbers
	3.4. Character Strings
	3.5. Delimiters
	3.6. Keywords
	3.6.1. Keyword Abbreviations
	3.6.2. Keyword Aliases

	3.7. Commands
	3.8. Tables
	3.8.1. Tabs Within Tables

	Chapter 4. Building an Input File
	4.1. Title
	4.2. Fluid Characterization
	4.3. Oil Composition
	4.4. Temperature and Pressure
	4.5. Saturation Pressure Calculation
	4.6. Injection Gases
	4.7. MMP Experiments
	4.8. MME Experiment
	4.9. The Resultant MME Injectant
	4.10. Depletion
	4.11. Additional MME Experiment
	4.12. Multicontact Miscibility Tests
	4.13. Final Input File

	Chapter 5. Command Reference
	5.1. Characterization Command
	5.1.1. Component Subcommand
	Table 5–1. Component Properties That Will Affect MMPz Calculations
	Table 5–2. Component Properties That Won’t Affect MMPz Calculations

	5.1.2. Binaries Subcommand

	5.2. Mixture Command
	5.3. Temperature Command
	5.4. Pressure Command
	5.5. MMP Command
	5.6. MME Command
	5.7. MCM Command
	5.8. Flash Command
	5.9. Saturation Pressure Command
	5.10. Dew Point Pressure Command
	5.11. Vapor Pressure Command
	5.12. Title Command
	5.13. Note Command
	5.14. TEST2 Command
	5.15. TEST1 Command
	5.16. INIT2 Command
	5.17. Stability Command
	5.18. Equation of State Command
	5.19. Tabs Command
	5.20. End-of-File Command
	5.21. End Command
	5.22. Include Command
	5.23. Current Directory Command
	5.24. Define Command
	5.25. Echo Command
	5.26. Timing Command

	Chapter 6. Units
	Table 6–1. Temperature Units
	Table 6–2. Pressure Units
	Table 6–3. Molar Volume Units

	Chapter 7. Running MMPz
	7.1. Windows Version
	7.2. Macintosh Version
	7.3. Console I/O
	7.4. Input Files
	7.5. Problems

